Nano-Bio Hybrid Electronic Sensors for Chemical Detection and Disease Diagnostics
نویسنده
چکیده
The need to detect low concentrations of chemical or biological targets is ubiquitous in environmental monitoring and biomedical applications. The goal of this work was to address challenges in this arena by combining nanomaterials grown via scalable techniques with chemical receptors optimized for the detection problem at hand. Advances were made in the CVD growth of graphene, carbon nanotubes and molybdenum disulfide. Field effect transistors using these materials as the channel were fabricated using methods designed to avoid contamination of the nanomaterial surfaces. These devices were used to read out electronic signatures of binding events of molecular targets in both vapor and solution phases. Single-stranded DNA functionalized graphene and carbon nanotubes were shown to be versatile receptors for a wide variety of volatile molecular targets, with characteristic responses that depended on the DNA sequence and the identity of the target molecule, observable down to part-per-billion concentrations. This technology was applied to increasingly difficult detection challenges, culminating in a study of blood plasma samples from patients with ovarian cancer. By working with large arrays of devices and studying the devices' responses to pooled plasma samples and plasma samples from 24 individuals, sufficient data was collected to identify statistically robust patterns that allow samples to be classified as coming from individuals who are healthy or have either benign or malignant ovarian tumors. Solution-phase detection experiments focused on the design of surface linkers and specific receptors for medically relevant molecular targets. A non-covalent linker was used to attach a known glucose receptor to carbon nanotubes and the resulting hybrid was shown to be sensitive to glucose at the low concentrations found in saliva, opening up a potential pathway to glucose monitoring without the need for drawing blood. In separate experiments, molybdenum disulfide transistors were functionalized with a reengineered variant of a μ-opiod receptor, a cell membrane protein that binds opiods and regulates pain and reward signaling in the body. The resulting devices were shown to bind opiods with affinities that agree with measurements in the native state. This result could enable not only an advanced opiod sensor but moreover could be generalized into a solid-state drug testing platform, allowing the interactions of novel pharmaceuticals and their target proteins to be read out electronically. Such a system could have high throughput due to the quick measurement, scalable device fabrication and high sensitivity of the molybdenum disulfide transistor. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Physics & Astronomy First Advisor A. T. Charlie Johnson This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1079
منابع مشابه
Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules
Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric r...
متن کاملPerformance Comparison of Peak Detection Algorithm for Nano-bio Sensors
Sensitive and selective sensor system is required to detect causes of disease. It is able to detect the cause of the disease more effectively by using multi-modal properties of nano-bio sensors. Some peak detection algorithms which are suitable for implementing with micro-controller are compared to apply to multi-modal nano-bio sensors in this paper. It is shown that autothreshold peak detectio...
متن کاملA simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملA simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملElectronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study
To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...
متن کاملElectronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study
To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...
متن کامل